NO-8143	794	(U)	SERS 8 MAVAL	UIDE 1 RESER	O KLY WCH L	SMA II AB WAS B SBI-	: A MU HINGTO	ATIFL ON DC NO 501	D S S	PICER	RT COO	€ 1/ ·	Y
UNCLASS	IFIED									F/8	9/2	NL	
				. ,									
	-		=							<u> </u>	-		
											RE		
			_						ļ			į.	
	•	_	.										

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ADE 000 58/

NRL Memorandum Report 5348

A Users Guide to KLYSMA II: A Multifluid Transport Code

D. S. SPICER

Geophysical and Plasma Dynamics Branch
Plasma Physics Division

R. W. CLARK

Plasma Radiation Branch Plasma Physics Division

June 14, 1984

This research was supported by the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00119 and work unit title "Early Time Dynamics."

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release, distribution unlimited

ن ن

(:अ.३

REPORT DOCUMENTATION PAGE									
UNCLASSIFIED	TO HEST PICTIVE MARKINGS								
28 SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT							
26 DECLASSIFICATION DOWNGRADING SCHED	Approved for public release; distribution unlimited.								
4 PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OR	IGANIZATION PI	EPORT NUMBERIS	1				
NRL Memorandum Report 5348									
6. NAME OF PERFORMING ORGANIZATION	66 OFFICE SYMBOL	7a. NAME OF MONITORING ORGANIZATION							
Naval Research Laboratory	Code 4780								
6c ADDRESS City State and /IP Code		76 ADDRESS (City	State and 712 Cod	le ·					
Washington, DC 20375									
8. NAME OF FUNDING SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER							
Defense Nuclear Agency	<u> </u>								
8c ADDRESS (City State and ZIII Code)		10 SOURCE OF FUNDING NOS							
Washington, DC 20305		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT				
11 TITLE Include Security Classification: A Use		62715H			DN380-296				
KLYSMA II: A Multifluid Transpor	t Code	<u></u>	<u></u>	1	L				
Spicer, D.S. and Clark, R.W.									
13a. TYPE OF REPORT 13b. TIME C		14 DATE OF REPO			DUNT				
Interim FROM 10/		June 14, 1984 38							
Subtask S99QMXBC, work unit 001	arch was supported 19 and work unit								
17 COSATI CODES	18 SUBJECT TERMS (C	ontinue on reverse if ne	ecessary and identi	fy by block number					
FIELD GROUP SUB GR	Multifluid Anomalous transport Electron-ic				on-ion insta-				
	Flux-corrected tr			ransport Ion-ion instabilities bilities					
This report documents a new one-dimensional multi-fluid transport code designed to study the cross-magnetic field transport of magnetized plasma in the presence of both anomalous and classical transport processes, radiation, and chemical reactions. 20 OISTR SUTTEN AVAILABILITY OF ABSTRACT SECURITY CLASSIFICATION									
UNCLASSIFIED UNLIMITED X SAME AS RET	UNCLASSIFIED								
226 NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE N		22c OFFICE SYMBOL					
D. S. Spicer	(202) 767-36	630	Code 4780						

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS GESCLETE

CONTENTS

I.	INTRODUCTION	1
п.	BASIC PHYSICAL PROCESSES AND NUMERICAL ALGORITHMS	1
III.	CODE STRUCTURE	7
IV.	DEFINITIONS	12
v.	CASE RUN	19
	ACKNOWLEDGMENTS	26
	REFERENCES	26

A USERS GUIDE TO KLYSMA II: A MULTIFLUID TRANSPORT CODE

I. Introduction

This report documents a new one dimensional multifluid transport code, KLYSMA II, designed to study the cross-field transport of magnetized plasma in the presence of both anomalous and classical transport processes, radiation, and chemical reactions. Because the code was designed for research, as well as production purposes, versatility was incorporated at its conception. It is modular, well documented, and incorporates a variety of logical switches so that many physical processes may be switched on and off to study their effect on the problem under consideration. In addition the code, while built on a VAX-780, was constructed with vectorization in mind. We note that KLYSMA II differs from KLYSMA in many ways: better numerical algorithms are used (e.g., advanced FCT, implicitly solves the coupled set of ion and electron diffusion equations), new physics is incorporated (e.g., electrons and ions are thermally coupled, new instabilities are considered such as the lower-hybriddrift instability), the code is vectorized, and the code is well-documented. In addition, very little physics is "hard wired" in KLYSMA II so that modifications and/or upgrades can be easily made as the need arises.

In section II we present the physical processes incorporated into KLYSMA II, the equations that describe these processes, the transport coefficients used, and the numerical algorithms utilized. In section III we present the structure of KLYSMA II and describe the purpose of each module. In section IV all the logical control parameters are defined as well as their purpose. Further a definition for each global array or parameter utilized by KLYSMA II will be given. Finally in section V we present a model run to illustrate the use of the code.

II. Basic Physical Processes and Numerical Algorithms

KLYSMA II is designed to study how the cross-magnetic field transport of a species of ions j with density n_j , temperature T_j and velocity \underline{V}_j interacts one dimensionally with an ambient plasma of ion density n_k , ion temperature T_k , and velocity \underline{V}_k , electron density n_e , electron temperature T_e , and electron velocity \underline{V}_e in the presence of a magnetic field \underline{B} . Because the heating and momentum coupling rates may be controlled by either collective ("anomalous") plasma processes and/or classical binary collisions, prescriptions for the computation of collective cross-field transport processes, as well as Manuscript approved March 2, 1984.

1

classical transport processes, are incorporated into KLYSMA II. The anomalous transport coefficients and the prescriptions for their use that are incorporated into KLYSMA II, with the exception of the lower hybrid drift instability (LHDI) and the drift cyclotron instability (DCI), can be found in Lampe et al (1975). The transport coefficients resulting from the LHDI and DCI, and the prescriptions for their use were obtained from Huba (1983). All classical transport coefficients utilized in KLYSMA II can be found in Braginskii (1965).

The following equations are solved:

$$\frac{\partial \mathbf{n}_{\mathbf{j}}}{\partial \mathbf{t}} + \underline{\nabla} \cdot (\mathbf{n}_{\mathbf{j}} \underline{\mathbf{v}}_{\mathbf{j}}) = 0 , \qquad (1)$$

ion continuity equation,

$$\frac{\partial}{\partial t} \left(\mathbf{m}_{j} \mathbf{n}_{j} \underline{\mathbf{V}}_{j} \right) + \underline{\mathbf{V}} \cdot \left(\mathbf{m}_{j} \mathbf{n}_{j} \underline{\mathbf{V}}_{j} \underline{\mathbf{V}}_{j} \right) =$$

$$-\underline{\mathbf{V}} \mathbf{P}_{j} + \mathbf{Z}_{j} \mathbf{n}_{j} \mathbf{e} \left(\underline{\mathbf{E}} + \frac{\underline{\mathbf{V}}_{j} \times \underline{\mathbf{B}}}{\mathbf{c}} \right) + \underline{\mathbf{R}}_{j} , \qquad (2)$$

ion momentum equation,

$$\frac{1}{(\gamma_{j}-1)} \left[\frac{\partial P_{j}}{\partial t} + \underline{\nabla}_{j} \cdot \underline{\nabla} P_{j} \right] = -P_{j} \underline{\nabla}_{j} \cdot \underline{\nabla}_{j} - \underline{\nabla}_{j} \cdot \underline{q}_{j} + Q_{j}$$
(3)

ion pressure equation,

$$\frac{E}{c} = \frac{-\nabla e \times B}{c} - \frac{\nabla P}{en_{e}} + \frac{R}{e} , \qquad (4)$$

force balance on electrons,

$$\frac{1}{(\gamma_{e}-1)} \left[\frac{\partial P_{e}}{\partial t} + \underline{v}_{e} \cdot \underline{v}_{e} P_{e} \right] = P_{e} \underline{v} \cdot \underline{v}_{e} - \underline{v} \cdot \underline{q}_{e} + Q_{e} , \qquad (5)$$

electron pressure equation,

$$N_{e} = \int_{J} Z_{j} N_{j} , \qquad (6)$$

quasi-neutrality,

$$\underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \underline{\mathbf{B}}}{\partial \mathbf{t}}, \tag{7}$$

Faraday's Equation,

$$\underline{\nabla} \cdot \underline{B} = 0 \tag{8}$$

and

$$\underline{\underline{V}}_{e} = \sum_{j} z_{j} n_{j} \underline{\underline{V}}_{j} - \frac{c}{4\pi n_{e} e} \underline{\underline{V}} \times \underline{\underline{B}}, \qquad (9)$$

Ampere's Equation,

where $P_j = n_j k_b T_j$, e is the magnitude of the electron charge, Z_j the charge state of the ion species j, m_j the mass of ion species j, and m_e the electron mass.

 \underline{R}_j represents the rate of momentum exchange between ion species k and j, and between ion species j and electrons, and has the general form

$$\underline{R}_{j} = \sum_{k=i,e} v_{jk} \frac{n_{k}^{m} k^{n} j^{m} j}{n_{j}^{m} j^{+} n_{k}^{m} k} (\underline{v}_{k} - \underline{v}_{j}), \qquad (10)$$

where v_{jk} represents the total effective collision frequency (both anomalous and classical) between species k and ion species j or the electrons . Q_j represents the rate at which ion species j is heated or cooled cm⁻³s⁻¹ due to energy exchange between ion species j and the other plasma constituents and has the form

$$Q_{j} = \sum_{k} v_{jk} (\underline{v}_{k} - \underline{v}_{j})^{2} \frac{n_{j}^{m} j^{n} k^{m} k}{n_{i}^{m} j^{i} + n_{k}^{m} k} + \frac{3m_{e}}{m_{i}} \frac{n_{e}^{k} b}{\tau_{e} j} (T_{e} - T_{j}), \qquad (11)$$

where the index k in the sum runs only over the ion species,

$$\tau_{ej} = \frac{3/m_e (k_b T_e)^{3/2}}{4/2\pi \lambda e^4 Z_1^2 n_j} ,$$

and λ is the Coulomb logarithm (Braginskii, 1965, p.215). \underline{q}_j represents the perpendicular to \underline{B} heat flux carried by the ion species j and has the form

$$\underline{\mathbf{q}}_{\mathbf{j}} = K_{\mathbf{j}}^{\mathbf{j}} \, \underline{\nabla}_{\mathbf{j}} (\mathbf{k}_{\mathbf{b}} \mathbf{T}_{\mathbf{j}}), \tag{12}$$

where

$$K_{i}^{j} = \frac{n_{j}^{k} b^{T} j^{T} j}{m_{j}} \frac{(\alpha x^{2} + \beta)}{(x^{4} + \gamma x^{2} + \delta)},$$

$$\tau_{j}^{j} = MINIMUM \left(\frac{3/m_{j}(k_{b}^{T} j) 3/2}{4/\pi \lambda e^{4} Z^{4} n_{j}}, \tau_{jan}\right),$$

 τ_{jan} being the anomalous value of τ_{j} due to collective processes, $x = \Omega_{cj}\tau_{j}$, $\Omega_{cj} = Z_{j}eB/m_{j}c$, and α , β , γ , δ are given by Braginskii (1965) according to the charge state of the ion species j.

qe is the electron heat flux given by

$$\frac{\mathbf{q}_{\mathbf{e}} = -\mathbf{K}_{j}^{\mathbf{e}} \, \underline{\nabla}_{j} (\mathbf{k}_{\mathbf{b}}^{\mathbf{T}}_{\mathbf{e}}), \tag{13}$$

where

$$K_{\perp}^{e} = \frac{{}^{n}_{e} {}^{k}_{b} {}^{T}_{e} {}^{\tau}_{eff}}{{}^{m}_{e}} \frac{({}^{\gamma}_{1} {}^{y^{2}} + {}^{\gamma}_{o})}{(y^{4} + \delta_{1} x^{2} + \delta_{o})},$$

 $\tau_{\rm eff}$ = MINIMUM $(\tau_{\rm e}, \tau_{\rm an})$, $\tau_{\rm an}$ being the anomalous value of τ , y = $\Omega_{\rm ce} \tau_{\rm eff}$, $\Omega_{\rm ce}$ = eB/m_ec, and $\gamma_{\rm l}$, $\gamma_{\rm o}$, $\delta_{\rm l}$, $\delta_{\rm o}$ are given by Braginskii.

The quantity \underline{R}_e and Q_e represent, respectively, the rate at which momentum and energy is gained or lost by electrons and have the form

$$R_{e} = \sum_{k} m_{e} n_{e} v_{eff} (\underline{v}_{k} - \underline{v}_{e})$$
 (14)

and

$$\underline{Q}_{e} = \sum_{k} \left\{ m_{e} n_{e} v_{eff} \left(\underline{V}_{k} - \underline{V}_{e} \right)^{2} + \frac{3m_{e} n_{e}^{k} b}{m_{k} \tau_{ek}} \left(T_{k} - T_{e} \right) \right\} - R_{rad}, \qquad (15)$$

where R_{rad} represents radiation losses.

These equations are solved in a time split fashion because of the wide range of time scales associated with the physical processes contained in equations (1) - (9). Momentum exchange between ion species, and electrons represented by \underline{R}_j in (2), is treated implicitly, as are the thermal transport and the source and sink terms generically denoted by

 $-\nabla \cdot \mathbf{q} + \mathbf{Q} \tag{16}$

in equations (3) and (5). All other source terms in equations (2)-(5) are treated as explicit source terms for the appropriate calls to the explicit FCT module DSSFCT (Boris, 1976).

The module MULTIF performs all convective transport by splitting the integration into half and full time steps so as to achieve space and time Module MULTIF calls MONTRN which implicitly exchanges momentum among the various plasma constituents. If the user selects LTCENT = .FALSE. the hydro timestep DT is split into many subcycles each with a time step DTC such that DT = NTIME * DTC. DTC is the time step associated with the shortest physical process contained in Q of (16). Under these circumstances the classical and anomalous transport coefficients are updated NTIME times with DIFFX3 being called after each update. DIFFX3 is an implicit module designed to be fully compatible with the FCT module. Physically subcycling the heating, cooling, and equilibration terms in the pressure equations is fully justified because Q changes very rapidly on a hydro time scale making it necessary to update the flow quantities less frequently. However, in the event the user prefers a fully time centered run, which is less economical but nevertheless more accurate, taking LTCENT = .TRUE. will achieve this so that DT = DTC and NTIME = 1. DIFFU3, which is called by DIFFX3, solves (implicitly the ion and electron) diffusion equations, together with equilibration and source terms, simultaneously utilizing the time step determined by DTSET and the condition of LTCENT. It incorporates a special finite differencing technique that requires the energy flux from the center of the cell I to the interface of the cell to equal the energy flux from the interface to the center of the cell I+1. This allows the temperature drop between cells to occur predominately in the cell with the smaller coefficient of thermal conduction, as would occur physically.

Subroutine REZONE allows the user to "window" the flow via a sliding rezone technique that uses the maximum and minimum velocity of ion specie 2 (the debris or "injected ion") to slide the window along with the flow if FLAG = 0.0, or a Lagrangian capability if FLAG = 1.0. The subroutine DTSET computes self-consistently the time-step necessary for numerical stability as

well as enforcing the condition that no physical quantity vary by more than $\sim 5\%$ in a timestep.

Ideally, debris (ion fluid 2) - air (ion fluid 1) coupling should be studied with a macroparticle or hybrid scheme which resolves the complex interaction of the two streams in velocity space. This is not always feasible for reasons which include economics and machine limitations. A compromise can be achieved through the use of a multi-fluid scheme. It permits the air and debris plasmas to maintain separate identities, and to interpenetrate. With a single fluid scheme, stagnation flow occurs at the debris-air interface and all local relative streaming energy is transformed into thermal energy. There is no way to study anomalous ion-ion coupling with the latter scheme, since the single fluid assumption implies a single fluid velocity at every point.

With as few as two fluids, a multifluid scheme can reproduce rather faithfully the configuration in phase space predicted by a macroparticle In one respect, however, it will eventually predict incorrect scheme. behaviour unless corrective measures are taken. Air plasma which has "coupled" via collisions, classical or collective, or via Larmor processes, to the expanding debris plasma subsequently moves along with the debris, i.e., it is picked up. This picked up air and debris mixture then interacts with the incoming upstream air plasma, via the same processes which earlier coupled the debris to the picked air, rather than stagnating and producing a shock. One way to deal with this pickup is to reassign some portions of the picked-up air fluid to the debris fluid. This is implemented in KLYSMA via SHUFF. uses the assumption that both air and debris have Maxwellian radial velocity distributions. It then imposes a velocity cutoff, such that all plasma above the cutoff velocity is considered to be debris, and all plasma below it is taken to be air. In addition, conservation of mass, momentum, energy, and charge are imposed in the transfer process.

III. Code Structure

As noted in the introduction the code is modular, the code is driven from the main subroutine MAINMF, which is structured as follows:

- computes classical transport coefficients
- Equilibrates ions and electrons and diffuses ions and electron heat fluxes together with thermal sources and sinks implicitly using DTC obtained from DTSET
- Performs all convective transport explicitly using DT obtained from DTSET
- sets to zero all necessary arrays
- Computes time step as necessary for numerical stability both DT and DTC

SUBROUTINE INITIAL

This subroutine reads initial data, boundary conditions, and boundary condition factors off disc to initiate the run. In addition, it sets up the initial conditions. In general this fortran module will be the one most likely modified by the user.

SUBROUTINE RSTART

This subroutine restarts the run at the necessary time step by reading from disc the data written there by <u>DUMPER</u>. Subroutine <u>DUMPER</u> must be called at least once before calling RSTART. For example, the user may want to run the code first from 1 to the 2001 timestep, and then dump the data to disc for restarting. Thus initially LDUMP = .TRUE. and LRESTR = .FALSE. When restarting the code at timestep 2001 LRESTR must be .TRUE.. LDUMP may be .TRUE. or .FALSE. depending on whether the user wants to restart KLYSMA II again.

SUBROUTINE ZERO

This subroutine simply sets to zero all arrays that are used in summation processes.

SUBROUTINE COUPLE

This subroutine computes a variety of physical parameters needed to compute both the classical and anomalous transport coefficients. Both ANOMAL and CLASS are entries to COUPLE. COUPLE must be called prior to either ANOMAL or CLASS.

ENTRY ANOMAL

This entry into couple computes the cross-field anomalous transport coefficients based on Lampe et al (1975).

ENTRY CLASS

This entry into couple computes the cross-field classical transport coefficients obtained from Braginsky (1965).

SUBROUTINE PRNT

This subroutine prints all transported quantities as well as the individual source terms for the momentum and temperature equations. IPRNT determines the number of time cycles between calls to PRNT.

SUBROUTINE PAGEPL (CALCM)

This subroutine generates page plots (versatex plots using NCAR plot package) of the same quantities printed by <u>PRNT</u>. IPAGE determines the number of time cycles between calls to PAGEPL (CALCM).

SUBROUTINE DIAG

This subroutine generates a time (or ordinate) versus distance (abscissa) curve of the position of the coupling shell. The point at which the magnetic field has a maximum is used as the spatial position of the coupling shell at time t.

SUBROUTINE DTSET

This subroutine is designed to determine the maximum timestep permitted that will still be numerically stable. It computes both DTC and DT.

SUBROUTINE DIFFX3

This subroutine transports the thermal heat flux of the electrons and ions perpendicular to the attendant magnetic field as well as the thermal sources and sinks. It utilizes a special subroutine DIFFU3 that implicitly solves the coupled set of ion and electron diffusion equations and is designed to be fully compatible with the FCT Module DSSFCT. A call to DIFGE3 must be made prior DIFFU3 so that the updated metric coefficients needed in DIFFU3 are generated.

SUBROUTINE MULTIF

This subroutine is the heart of KLYSMA. It utilizes the FCT Module DSSFCT to solve the various fluid equations. Note that the transport coefficients used in these source terms are not time centered when LTCENT = .FALSE. However, when LTCENT = .TRUE. all of the transport coefficients,

anomalous and classical, are recomputed both at the half and the full time step. In addition, $\overline{\text{DIFFX3}}$ is called at both the half and full time step if LTCENT = .TRUE.

MULTIF also calls a Subroutine REZONE that keeps the flow "windowed" spatially between the maximum and minimum values of the debris velocity.

SUBROUTINE SHUFF

This subroutine is designed to allow air (J=1 fluid) to be picked up by the faster moving debris (J=2 fluid) and for any deaccelerating debris to be converted to slower air. To accomplish this an algorithm is used that assumes both ion species are locally Maxwellian within a grid cell and drifting with a speed VIX(I,J). In addition, it is assumed that whenever the air fluid velocity exceeds $V_D = (VIX(I,1) + VIX(I,2))/2$ that fraction of the air distribution that exceeds V_D becomes debris. In other words the fraction $\int_{-\infty}^{D} f_{air} \, dv_x \text{ stays air and the fraction } \int_{V_D}^{\infty} f_{air} dv_x \text{ becomes debris. Likewise for the debris. With these assumptions, together with the requirements that mass, momentum, energy and charge be conserved within a cell volume adjusted densities, velocities, temperatures, and charges are computed.$

SUBROUTINE HANE\$

This subroutine contains three entries, HANE\$, SOLAR\$, and LASER\$, each of which computes the initial conditions for a HANE, SOLAR, or LASER Run.

SUBROUTINE ILEAK

This subroutine computes the total number of debris ions loss from the coupling shells, as well as, the total debris energy loss based on the loss cone instability.

IV. DEFINITIONS

The Module GLOBMF.FOR contains all the parameters global to KLYSMA. The following common blocks are included in GLOBMF. FOR.

COMMON/DIM/

NSPEC: Number of ion species, presently dimensioned as

MSPEC = 2 in the parameter statement

NCHEM: Number of ionization levels followed for each ion

species

NINSTE: Number of electron-ion two stream instabilities,

presently dimensioned as MINSTE = 4 in the parameter

statement

NINSTI: Numer of ion-ion two stream instabilities, presently

dimensioned as MINSTI = 2 in the parameter statement

COMMON/PHYSIC/

NI (NPT, MSPEC): ion number densities (particles cm^{-3})

TI (NPT, MSPEC): ion temperatures (degrees Kelvin)

VIX (NPT, MSPEC): ion drift velocities in x direction (cm/s)

VIY (NPT, MSPEC): ion drift velocities in y direction (cm/s)

VIZ (NPT, MSPEC): ion drift velocities in z direction (cm/s)

PI (NPT, MSPEC): ion pressures (dynes/cm²)

RHO (NPT, MSPEC): ion mass densities (grams cm $^{-3}$)

RHOI (NPT, MSPEC): inverse of RHO

NE (NPT): electron number density (particles/cm³)

VEX (NPT): electron drift velocity in x-direction (cm/s)

VEY (NPT): electron drift velocity in y-direction (cm/s)

VEZ (NPT: electron drift velocity in z-direction (cm/s)

BY (NPT): Y-component of magnetic field (gauss)

BZ (NPT): Z-component of magnetic field (gauss)

EX (NPT): X-component of electric field (statvolts/cm)

EY (NPT): Y-component of electric field (statvolts/cm)

EZ (NPT): Z-component of electric field (statvolts/cm)

TE (NPT): electron temperature (degrees Kelvin)

JY (NPT): y component of current density (statamps/cm²)

JZ (NPT): z component of current density (statamps/cm²)

PE (NPT): electron pressure (dynes cm^{-2})

UNIT (NPT): array of which all elements are one ZERO (NPT): array of which all elements are zero PEDX (NPT): derivative of PE with respect to x

COMMON/CYCLE

MINSTP: index of STARTING VALUE of time loop

MAXSTP: index of final value of time loop

IDIAG: frequency of calls to <u>DIAG</u>

IPRNT: frequency of calls to <u>PRNT</u>

IPAGE: frequency of calls to PAGEPL

IFLICK: frequency of calls to FLICK (dummy at present)

ISTEP: value of index corresponding to timestep

IDUMP: frequency of intermediate dumps

COMMON/MESH/

XCOR (NPT): positions of cell centers

XCORH (NPC): positions of cell interfaces

NX: number of cells (or grid points)

NX1: NX+1 number of cell interfaces

NX2: NX+2

ALPHA: Geometry chosen cartesian (ALPHA = 1), cylindrical

(ALPHA = 2), or spherical (ALPHA = 3)

FLAG: used if LAGRANGIAN code, FLAG = 0.0 Eulerian,

FLAG = 1.0 Lagrangian, must be used in conjuction

with LREZONE = .TRUE.

DT: hydro time step (secs)

TIME: TIME (secs)

DTC: TIME STEP associated with shortest physical process

modelled by code

NTIME: NTIME = MAX (DT/DTC, 1)

COURT: COURANT FACTOR

COMMON/PARA/

CS (NPT, MSPEC): ion sound speed (cm/s)

WPI (NPT, MSPEC): ion plasma frequency (Hertz)

WCI (NPT, MSPEC): ion cyclotron frequency (Hertz)

VTI (NPT, MSPEC): ion thermal speed (cm/s)

VA (NPT, MSPEC): individual ion Alfven speed (cm/s)

VDEIX (NPT, MSPEC): absolute value of ion-electron drift speeds in

x-direction (cm/s)

VDEIP (NPT, MSPEC): absolute value of ion-electron drift speeds

perpendicular to B (cm/s)

RCI (NPT, MSPEC): ion thermal Larmor radii

GYRRAD (NPT, MSPEC): ion non-thermal Larmor radii

UIJ (NPT): absolute value of ion-ion drift speed in

in x-direction (cm/s)

VTE (NPT): electron thermal speed (cm/s)

WPE (NPT): electron plasma frequency (Hertz)

WCE (NPT): electron cyclotron frequency (Hertz)

COMMON/BOUND/ see Boris NRL Memo Report (3237)

NIR (MSPEC): RIGHT ion density boundary condition factor

NIL (MSPEC): LEFT ion density boundary condition factor

NIRO (MSPEC): RIGHT ion density boundary value
NILO (MSPEC): LEFT ion density boundary value

VIXR (MSPEC): RIGHT ion x-velocity boundary condition factor

VIXL (MSPEC): LEFT ion x-velocity boundary condition factor

VIXRO (MSPEC): RIGHT ion x-velocity boundary value
VIXLO (MSPEC): LEFT ion x-velocity boundary value

VIYR (MSPEC): RIGHT ion y-velocity boundary condition factor

UIYL (MSPEC): LEFT ion y-velocity boundary condition factor

VIYRO (MSPEC): RIGHT ion y-velocity boundary value
VIYLO (MSPEC): LEFT ion y-velocity boundary value

TIR (MSPEC): RIGHT ion temperature boundary condition factor

TIL (MSPEC): LEFT ion temperature boundary condition factor

TIRO (MSPEC): RIGHT ion temperature boundary value
TILO (MSPEC): LEFT ion temperature boundary value

TER: RIGHT electron temperature boundary condition factor
TEL: LEFT electron temperature boundary condition factor

TERO: RIGHT electron temperature boundary condition

TELO: LEFT electron temperature boundary condition

BZR: RIGHT z-component of B boundary condition factor

BZL: LEFT z-component of B boundary condition factor

BZRO: RIGHT z component of B boundary value

BZLO: LEFT z-component of B boundary value

COMMON/CHEM/

RAD (NPT): Radiation Losses (ergs/cm³/s)

NIZ (NPT, MSPEC, NCHEM): Particles cm⁻³ for each ionization state of a given ion specie

COMMON/TRANS/

VPIX (NPT, MSPEC, MINSTE): Phase velocities in x-direction for a given electron-ion two stream instability (cm/s)

VPIEY (NPT, MSPEC, MINSTE): Phase velocities in y-direction for a given electron-ion two stream instability (cm/s)

VEFF (NPT, MSPEC, MINSTE): effective collision frequencies resulting from a given electron-ion two stream instability (Hertz)

VEFFII (NPT, MINSTI): effective ion-ion collision frequency resulting from a given ion-ion two stream instability (Hertz)

VPII (NPT, MINSTI): phase velocities in x-direction for a given ion-ion two stream instability (cm/s)

EQBIE (NPT, MSPEC): classical electron-ion equilibration frequencies (Hertz)

VEI (NPT, MSPEC): classical electron-ion collisional frequencies (Hertz)

COLJE (NPT, MSPEC): total effective electron-ion collision frequency, anomalous + classical (Hertz)

KAPI (NPT, MSPEC): ion thermal conduction coefficient

VII (NPT, MSPEC): classical ion-ion collision frequency (Hertz)

EQBIK (NPT, MSPEC): classical ion-ion equilibration frequency (Hertz)

COLKJ (NPT, MSPEC): classical ion-ion momentum exchange rate

OFFLAR (NPT, MSPEC): binary switch used to turn off Larmor coupling

terms if effective ion-ion collision frequency exceeds ion gyro frequency

COLJK (NPT, MSPEC, MINSTI): anomalous ion-ion momentum exchange rate

RESIS (NPT): classical resistivity (sec)

KAPE (NPT): electron thermal conduction coefficient

RSIZE: system size parallel to B field (cm)

COMMON/TIMSTP/

DRAG(NPT, 16, MSPEC): individual terms that result in ion acceleration or

drag (dynes)

IONH(NPT, 16, MSPEC): individual terms that result in ion cooling or

heating (ergs/cm³/s)

ELECH(NPT, 16): individual terms that result in electron heating or

cooling (ergs/cm³/s)

COMMON/CONST/ - all physical constants are c.g.s.

EC: Electron charge, ECI = 1.0/EC

BK: Boltzmann's constant, BKJ = 1.0/BK

C: Speed of light, CI = 1.0/C

PIE: 3.145927

PIE4: 4.0 * PIE

PIE8: 8.0 * PIE

EM: electron mass

EMEC: EM/EC

GAME: electron ratio of specific heats

GAME1: GAME-1
GAME2: GAME-2

GAMI ion ratio of specific heats

GAMI1: GAMI-1
GAMI2: GAMI-2

EVK: Conversion fractor from eV to degrees Kelvin

COMMON/ION/

MASS (MSPEC): ion masses (grams)

MASSI (MSPEC): inverse of MASS

MR (MSPEC): electron to ion mass ratio for each ion specie

SQMR (MSPEC): inverse of SQMR

SMASSI (MSPEC): square root of MASSI

Z(NPT, MSPEC): ion charge

COMMON/LOGIC/

LREZON

LPAGE: control switch to call PAGEPL LPRNT: control switch to call PRNT LCPLE: control switch to call COUPLE LANOM: control switch to call ANOMAL LCLASS: control switch to call CLASS LRESTR: control switch to call RSTART LDUMP: control swtich to call DUMPER LNEU: control switch to call NEUTRALS (Dummy for now) LRAD: control switch to call RADIAT (Dummy for now) LDOAG: control switch to call DIAG LIAI: switches on ion-acoustic instability if LANOM = TRUE LBCI: switches on beam cyclotrm instability if LANOM = TRUE LMTI: switches on modified two stream instability if LANOM = TRUE LMII: switches on magnetized ion-ion instability if LANOM = TRUE LUII: switches on unmagnetized ion-ion instability if LANOM = TRUE LHDI: switches on unmagnetized lower hybrid drift instability if LANOM = TRUE LVISCO: switches on artificial viscosity LDIFF: control switch for DIFFX3 LARMOR: switches on or off ion Larmor coupling LSHUFF: control switch to call SHUFF LILEAK: control switch to call ILEAK LTCENT: if true transport is fully time and space centered LSTION: control switch to call Supra thermal ion module (dummy for now) LBOHM: control switch to call BOHM (dummy for now) LCHEM control switch to call chemistry module LJAC71: control switch to call JAC71 - not used LHANE control switch to call HANE LSOLAR control switch to call SOLAR LLASER control switch to call LASER LECHO control switch to call to give positions for module transfer LSTOP control switch to call to stop code LFLICK control switch to call FLICK (Dummy for now)

control switch to call REZONE

LCALCM control switch to call CALCM

LPARTX control switch to call PARTX (Dummy for now)

COMMON/REZONE/

IMAX: index where VIX (1,2) has its maximum

IMIN: index where VIX (1,2) has its minimum

VNEW (NPT): see subroutine rezone

XOLD (NPT): old x-coordinates

COMMON/HANE/

HRA: hour of HANE, military time

LAT: latitude of HANE

DAY: day of year based on sequential numbering

ALT: altitude

YIELD: energy yield of HANE in megatons

WMASS: weapon mass in kilograms

RXRADN: ionization distance

BACKIZ: level of background ionization

NTOTAL: total number of debris ions

RMASS: Radius at a weapon mass of ambient plasma

COMMON/ILEAK/

NLOSS: total number of debris ions loss down field lines

ELOSS: total energy of debris ions loss down field lines

IFLUX (2000): debris ion flux (particles $cm^{-2} sec^{-1}$)

V. CASE RUN

The following initial data and boundary condition factors were used to initialize the run presented below.

The output for this run is presented below. No physical interpretation of this output will be presented here since the results are only presented for code documentation purposes. The initialization parameters given, while arbitrary, are designed to test the code performance. The run starts at time = 0.0 and runs up to 0.5 millisecs. Figure 1 illustrates the initial profiles selected (viz., densities, temperatures, pressures, electric fields, and magnetic field), while Figure 2 illustrates the formation of the debris-air interface t \simeq 0.5 millisecs. Within this interface air is swept up by the debris, a laminar electric field capable of debris air acceleration is formed, and significant ion-electron heating occurs.

```
$CYC
       MINSTP =
                 1,
       MAXSTP = 101,
       IFLICK = 500.
       IDIAG = 10.
       IPRNT = 100,
       IPAGE = 100,
       IDUMP = 10,
       NSPEC =
                  2.
$END
$BCI
       NIR(1)
               = 0.0,
                           NIR(2)
                                    = 1.0,
       NIL(1)
                = 1.0,
                           NIL(2)
                                    = 1.0,
       NIRO(1) = 5.504E7, NIRO(2)
NILO(1) = 0.0, NILO(2)
                                   = 0.0,
                                    = 0.0,
       VIXR(1) = 1.0
                           VIXR(2)
                                    = 1.0,
       VIXL(1) = 1.0
                           VIXL(2)
                                    = 1.0,
       VIXRO(1) = 0.0
                           VIXRO(2) = 0.0
       VIXLO(1) = 0.0,
                           VIXLO(2) = 0.0
                           VIYR(2)
       VIYR(1) = 1.0
                                   = 1.0,
       VIYL(1) = 1.0
                           VIYL(2) = 1.0
       VIYRO(1) \approx 0.0
                           VIYRO(2) = 0.0
       VIYLO(1) = 0.0
                           VIYLO(2) = 0.0
       VIZR(1) = 1.0.
                           VIZR(2) = 1.0
       VIZL(1) = 1.0
                           VIZL(2) = 1.0,
       VIZRO(1) = 0.0
                           VIZRO(2) ≈ 0.0,
       VIZLO(1) = 0.0
                           VIZLO(2) = 0.0
       TIR(1)
               = 0.0,
                           TIR(2)
                                    ⇒ 1. 0,
       TIL(1)
                = 1.0,
                           TIL(2)
                                    = 1.0,
       TIRO(1) = 1.161E7, TIRO(2)
                                   = 0.0,
       TILO(1) = 0.0
                           TILO(2)
                                   ≈ 0. 0,
                ≈ 0.0,
       PIR(1)
                           PIR(2)
                                    = 1.0,
                = 1.0,
                                    = 1.0,
       PIL(1)
                           PIL(2)
       PIRO(1) = 8.81E-2.PIRO(2) = 0.0.
                           PILO(2) = 0.0,
       PILO(1) \approx 0.0
               ≈ 0.0,
                                    ⇒ 0.0,
       VIR(1)
                           VIR(2)
       VIL(1)
                = 0. O,
                           VIL(2)
                                    = 0.0,
$END
$ I OND
       MASS(1) \approx 2.34E-23, MASS(2) \approx 4.51E-23,
       ZZ(1)
                = 1.0,
                             ZZ(2)
                                      = 1.0,
       TIMIN(1) = 1.1605E4, TIMIN(2) = 0.0,
       NIMIN(1) = 0.0
                             NIMIN(2) = 0.0
       TEMIN
               = 1.1605E4,
$END
$BCE
       TER = 0.0,
                        TEL = 1.0,
       TERO = 1.161E6, TELO = 0.0,
       PER = 1.0,
                        PEL = 1.0,
       PERO = 0.0
                        PELO = 0.0,
                        VEL = 0.0,
BYL = 1.0,
       VER = 0.0
       BYR = 1.0,
       BYRO = 0.0,
                        BYLD = 0.0,
       BZR = 0.0,
                        BZL = 1.0,
       BZRO = 0.5,
                        BZLO = 0.0,
SEND
$CONTRL
       LPAGE = F, LPRNT = T, LCPLE = T, LCLASS = T,
                                                    = F,
       LRESTR = F, LDUMP = T, LDIAG = T, LNEU
       LRAD
              = F, LANOM = T, LIAI
                                       = T, LBCI
       LMTI
              = T, LMII
                           = T, LUII
                                       = T, LHDI
                                                    = T,
```

```
LVISCO = T, LDIFF = T, LJOULE = F, LARMOR = T,
      LSHUFF = T, LILEAK = F, LTCENT = F, LSTION = F,
      LBOHM = F, LCHEM = T, LJAC71 = F, LHANE = T,
      LSOLAR = F, LLASER = F, LECHO = T, LSTOP = F,
      LFLICK = F, LREZON = T, LCALCM = T,
$END
$INTDAT
       XMIN = 1.0E5,
XMAX = 1.0E6,
             = 99,
       NX
             = 1.0E-10,
       DT
       COURT = 0.2,
       ALPHA = 3,
       TIMEO = 0.0
       BYO = 0.0,
       BYMIN = 0.0,
       BZO = 0.5,
       BIMIN = 0.0.
       YSCALE = 0.0,
       ZSCALE = 0.0,
       VZERO = 2.0E8,
       NDZERO = 1.0E9,
       NAZERO = 1.0E8,
       TDZERO = 1.1605E7.
       TAZERO = 1. 1605E4,
       TEZERO = 1.1605E6.
       RSIZE = 1. 0E10,
             = 1.0,
       FLAG
$END
SHANE
       HRA
             = 0.0,
             = 40. Q,
       LAT
       DAY
             = 180,
       ALT
             = 400.0,
       YIELD = 1.2
       WMASS = 1.0,
       TEH
           ≠ 1.0E5,
       BZRH = 0.5
$END
$SOLAR
       BETA
             = 1.0E-3,
       VSOLAR = 1.0E8,
       FMASS = 1.0E12,
       FENER = 5.0E27,
       TIAS
              = 1.0E6,
              = 1.0E4,
       TIDS
              = 1.0E6,
       TES
              = 1.0E10,
       NIAS
              = 1.0E12,
       NIDS
       BZRS
              = 1.0E2,
$END
$LASER
       JOULES = 30.0,
       TMASS = 4.51E-7
$END
$CHEM
       NCHEM(1) = 6
       NCHEM(2) = 9
       ACHEM
              = 1.0,
SEND
```


Figure 1. Initial conditions (t = 0). Shown are the (a) densities, (b) temperatures, (c) presures, (d) electric fields, and (e) magnetic field profiles used to initialize the run.

Figure 1. Initial conditions (t = 0). Shown are the (a) densities, (b)

(cont'd.) temperatures, (c) pressures, (d) electric fields, and (e)

magnetic field profiles used to initialize the run.

Figure 2. Final conditions (t = 5.3×10^{-4} sec). Shown are the (a) densities, (b) temperatures, (c) x velocity, (d) y velocity, (e) pressures, (f) electric fields, and (g) magnetic field profiles after approximately 0.5 millisecs.

Figure 2. Final conditions (t = 5.3×10^{-4} sec). Shown are the (a) (cont'd.) densities, (b) temperatures, (c) x velocity, (d) y velocity, (e) pressures, (f) electric fields, and (g) magnetic field profiles after approximately 0.5 millisecs.

Acknowledgments

This research was sponsored by the Defense Nuclear Agency.

References

- Boris, J.P.: 1976, "Flux Corrected Transport Modules for Solving Generalized Continuity Equations," NRL Memo Rept. 3237. (AD-A023-891)
- Braginskii, S.I.: 1965, "Reviews of Plasma Physics Vol. I," p. 205, Ed. M.A. Leontovich, Consultants Bureau, N.Y.
- Huba, J.: 1983, private communication.
- Lampe, M., W.M. Manheimer, and K. Papadopoulos: 1975, "Anomalous Transport Coefficients for Hane Applications due to Plasma Micro-instabilities, NRL Memo Rept. 3076. (AD-A014-411)

· DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE COMM, CMD, CONT 7 INTELL WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
Olcy ATTN C-650
Olcy ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
O1CY ATTN NUCLEAR MONITORING RESEARCH
O1CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION
ALEXANDRIA, VA. 22314
O2CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
O1CY ATTN STVL
O4CY ATTN TITL
O1CY ATTN DDST
O3CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
O1CY ATTN FCPR

DEFENSE NUCLEAR AGENCY SAO/DNA BUILDING 20676 KIRTLAND AFB, NM 87115 Olcy D.C. THORNBURG DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
O1CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
Olcy ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NB 68113
OICY ATTN JLTW-2
OICY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
Olcy ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
OICY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
O1CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG WASHINGTON, D.C. 20305 Olcy ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
OICY ATTN DELAS-EO F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
OICY ATTN ATC-T MELVIN T. CAPPS
OICY ATTN ATC-O W. DAVIES
OICY ATTN ATC-R DON RUSS

1

•

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, D.C. 20310
O1CY ATTN C- E-SERVICES DIVISION

COMMANDER
FRADCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
OLCY ATTN DRSEL-NL-RD H. BENNET
OLCY ATTN DRSEL-PL-ENV H. BOMKE
OLCY ATTN J.E. QUIGLEY

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. HUACHUCA, AZ 85613
OLCY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTES VILLE, VA 22901
01CY ATTN DRXST-SD

COMMANDER
U.S. ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J.A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
O1CY ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD 21005
OICY ATTN TECH LIBRARY EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
O1CY ATTN DOCUMENT CONTROL

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
OICY ATTN JIM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
OLCY ATTN ATAA-SA
OLCY ATTN TCC/F. PAYAN JR.
OLCY ATTN ATTA-TAC LTC J. HESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, D.C. 20360
OICY ATTN NAVALEX 034 T. HUGHES
OICY ATTN PME 117
OICY ATTN PME 117-T
OICY ATTN CODE 5011

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLAND ROAD, BLDG. 5
WASHINGTON, D.C. 20390
OICY ATTN MR. DUBBIN STIC 12
OICY ATTN NISC-50
OICY ATTN CODE 5404 J. GALET

COMMANDER
NAVAL OCCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
O1CY ATTN J. FERGUSON

NAVAL RESEARCH LABORATORY Olcy ATTN CODE 4700 S. L. Ossakow
26 CYS IF UNCLASS. 1 CY IF CLASS)
Olcy ATTN CODE 4701 I Withoutisky
Olcy ATTN CODE 4780 J. Huba (100
CYS IF UNCLASS. 1 CY IF CLASS)
Olcy ATTN CODE 4780 J. Huba (100 WASHINGTON, D.C. 20375 Olcy ATTN CODE 7500 Olcy ATTN CODE 7550 Olcy ATTN CODE 7580 Olcy ATTN CODE 7551 Olcy ATTN CODE 7555
Olcy ATTN CODE 4730 E. MCLEAN
Olcy ATTN CODE 4108 OLCY ATTN CODE 4730 B. RIPIN 20CY ATTN CODE 2628

COMMANDER NAVAL SEA SYSTEMS COMMAND WASHINGTON, D.C. 20362 OLCY ATTN CAPT R. PITKIN

COMMANDER NAVAL SPACE SURVEILLANCE SYSTEM DAHLGREN, VA 22448 OLCY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE NAVAL SURFACE WEAPONS CENTER WHITE OAK, SILVER SPRING, MD 20910 Olcy ATTN CODE F31

DIRECTOR STRATEGIC SYSTEMS PROJECT OFFICE DEPARTMENT OF THE NAVY WASHINGTON, D.C. 20376 Olcy ATTN NSP-2141 Olcy ATTN NSSP-2722 FRED WIMBERLY

COMMANDER NAVAL SURFACE WEAPONS CENTER DAHLGREN LABORATORY DAHLGREN, VA 22448 Olcy ATTN CODE DF-14 R. BUTLER

OFFICER OF NAVAL RESEARCH ARLINGTON, VA 22217 Olcy ATTN CODE 465 Olcy ATTN CODE 461 Olcy ATTN CODE 402 OlCY ATTN CODE 420 OlCY ATTN CODE 421

COMMANDER AEROSPACE DEFENSE COMMAND/DC

AEROSPACE DEFENSE COMMAND/XPD DEPARTMENT OF THE AIR FORCE ENT AFB, CO 80912 O1CY ATTN XPDQQ OICY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY HANSCOM AFB, MA 01731 Olcy ATTN OPR HAROLD GARDNER
OLCY ATTN LKB KENNETH S.W. CHAMPION Olcy ATTN OPR ALVA T. STAIR Olcy ATTN PHD JURGEN BUCHAU
Olcy ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY KIRTLAND AFT, NM 87117 Olcy ATTN SUL Olcy ATTN CA ARTHUR H. GUENTHER Olcy ATTN NTYCE 1LT. G. KRAJEI

AFTAC PATRICK AFB, FL 32925 Olcy ATTN TF/MAJ WILEY Olcy ATTN TN

AIR FORCE AVIONICS LABORATORY WRIGHT-PATTERSON AFB, OH 45433 Olcy ATTN AAD WADE HUNT Olcy ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF RESEARCH, DE VELOPMENT, & ACQ DEPARTMENT OF THE AIR FORCE WASHINGTON, D.C. 20330 Olcy ATTN AFRDQ

HEADQUARTERS ELECTRONIC SYSTEMS DIVISION DEPARTMENT OF THE AIR FORCE HANSCOM AFB, MA 01731 Olcy ATTN J. DEAS

HEADQUARTERS ELECTRONIC SYSTEMS DIVISION/YSEA DEPARTMENT OF THE AIR FORCE HANSCOM AFB, MA 01732 OICY ATTN YSEA

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/DC
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731
OICY ATTN DCKC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
OICY ATTN NICD LIBRARY
OICY ATTN ETDP B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
OICY ATTN DOC LIBRARY/TSLD
OICY ATTN OCSE V. COYNE

SAMSO/SZ
POST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
O1CY ATTN SZJ

STRATEGIC AIR COMMAND/XPFS
OFFUTT AFB, NB 68113
O1CY ATTN ADWATE MAJ BRUCE BAUER
O1CY ATTN NRT
O1CY ATTN DOK CHIEF SCIENTIST

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
OICY ATTN SKA (SPACE COMM SYSTEMS)
M. CLAVIN

SAMSO/MN NORTON AFB, CA 92409 (MINUTEMAN) 01CY ATTN MNNL

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
OICY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
O1CY ATTN DOC CON FOR D. SHERWOOD

EG&G, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 85544
Olcy Attn Doc Con For J. Breedlove

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
OICY ATTN DOC CON FOR TECH INFO DEPT
OICY ATTN DOC CON FOR L-389 R. OTT
OICY ATTN DOC CON FOR L-31 R. HAGER
OICY ATTN DOC CON FOR L-46 F. SEWARD

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
O1CY ATTN DOC CON FOR J. WOLCOTT
O1CY ATTN DOC CON FOR R.F. TASCHEK
O1CY ATTN DOC CON FOR E. JONES
O1CY ATTN DOC CON FOR J. MALIK
O1CY ATTN DOC CON FOR R. JEFFRIES
O1CY ATTN DOC CON FOR J. ZINN
O1CY ATTN DOC CON FOR P. KEATON
O1CY ATTN DOC CON FOR D. WESTERVELT
O1CY ATTN D. SAPPENFIELD

SANDIA LABORATORIES
P.O. BOX 5800

ALBUQUERQUE, NM 87115

OICY ATTN DOC CON FOR W. BROWN
OICY ATTN DOC CON FOR A. THORNBROUGH
OICY ATTN DOC CON FOR T. WRIGHT
OICY ATTN DOC CON FOR D. DAHLGREN
OICY ATTN DOC CON FOR 3141
OICY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
O1CY ATTN DOC CON FOR B. MURPHEY
O1CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
OICY ATTN DOC CON DR. YO SONG

OTHER GOVERNMENT

DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234

Olcy (ALL CORRES: ATTN SEC OFFICER FOR)

INSTITUTE FOR TELECOM SCIENCES NATIONAL TELECOMMUNICATIONS & INFO ADMIN BOULDER, CO 80303

Olcy ATTN A. JEAN (UNCLASS ONLY)

OLCY ATTN W. UTLAUT

OlCY ATTN D. CROMBIE OLCY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN ENVIRONMENTAL RESEARCH LABORATORIES DEPARTMENT OF COMMERCE BOULDER, CO 80302 O1CY ATTN R. GRUBB OICY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION P.O. BOX 92957 LOS ANGELES, CA 90009 Olcy ATTN I. GARFUNKEL
Olcy ATTN T. SALMI
Olcy ATTN V. JOSEPHSON Olcy ATTN S. BOWER OICY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP 5 OLD CONCORD ROAD BURLINGTON, MA 01803 Olcy ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC. 1901 RUTLAND DRIVE AUSTIN, TX 78758 Olcy ATTN L. SLOAN Olcy ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC. P.O. BOX 983 BERKELEY, CA 94701 Olcy ATTN J. WORKMAN Olcy ATTN C. PRETTIE O1CY ATTN S. BRECHT

BOEING COMPANY, THE P.O. BOX 3707 SEATTLE, WA 98124 Olcy ATTN G. KEISTER
OLCY ATTN D. MURRAY
OLCY ATTN G. HALL
OLCY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC. 555 TECHNOLOGY SQUARE CAMBRIDGE, MA 02139 Olcy ATTN D.B. COX OlCY ATTN J.P. GILMORE

COMSAT LABORATORIES LINTHICUM ROAD CLARKSBURG, MD 20734 OLCY ATTN G. HYDE

CORNELL UNIVERSITY DEPARTMENT OF ELECTRICAL ENGINEERING ITHACA, NY 14850 OICY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC. BOX 1359 RICHARDSON, TX 75080 Olcy ATTN H. LOGSTON Olcy ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC. 606 Wilshire Blvd. Santa Monica, Calif 90401 OLCY ATTN C.B. GABBARD

ESL, INC. 495 JAVA DRIVE SUNNY VALE, CA 94086 Olcy ATTN J. ROBERTS O1CY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY SPACE DIVISION VALLEY FORGE SPACE CENTER GODDARD BLVD KING OF PRUSSIA P.O. BOX 8555 PHILADELPHIA, PA 19101 OLCY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY P.O. BOX 1122 SYRACUSE, NY 13201 OICY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES CO., INC. HMES
COURT STREET
SYRACUSE, NY 13201
O1CY ATTN G. MILLMAN

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN TECHNICAL LIBRARY
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
OICY ATTN J.M. AEIN
OICY ATTN ERNEST BAUER
OICY ATTN HANS WOLFARD
OICY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION 500 WASHINGTON AVENUE NUTLEY, NJ 07110 01CY ATTN TECHNICAL LIBRARY

JAYCOR 11011 TORREYANA ROAD P.O. BOX 85154 SAN DIEGO, CA 92138 OICY ATTN J.L. SPERLING JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
OICY ATTN DOCUMENT LIBRARIAN
OICY ATTN THOMAS POTEMRA
OICY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
Olcy ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED STUDIES 816 STATE STREET (P.O DRAWER QQ) SANTA BARBARA, CA 93102 OICY ATTN DASIAC OICY ATTN WARREN S. KNAPP OICY ATTN WILLIAM MCNAMARA OICY ATTN B. GAMBILL

LINKABIT CORP 10453 ROSELLE SAN DIEGO, CA 92121 01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC P.O. BOX 504
SUNNYVALE, CA 94088
OICY ATTN DEPT 60-12
OICY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.

3251 HANOVER STREET

PALO ALTO, CA 94304

OICY ATTN MARTIN WALT DEPT 52-12

OICY ATTN W.L. IMHOF DEPT 52-12

OICY ATTN RICHARD G. JOHNSON DEPT 52-12

OICY ATTN J.B. CLADIS DEPT 52-12

MARTIN MARIETTA CORP ORLANDO DIVISION P.O. BOX 5837 ORLANDO, FL 32805 OICY ATTN R. HEFFNER

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
Olcy ATTN DAVID M. TOWLE
Olcy ATTN L. LOUGHLIN
Olcy ATTN D. CLARK

MCDONNEL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
OICY ATTN N. HARRIS
OICY ATTN J. MOULE
OICY ATTN GEORGE MROZ
OICY ATTN W. OLSON
OICY ATTN R.W. HALPRIN

OICY ATTN TECHNICAL LIBRARY SERVICES

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
Olcy ATTN P. FISCHER
OLCY ATTN W.F. CREVIER
OLCY ATTN STEVEN L. GUTSCHE
OLCY ATTN R. BOGUSCH
OLCY ATTN R. HENDRICK
OLCY ATTN RALPH KILB
OLCY ATTN DAVE SOWLE
OLCY ATTN F. FAJEN
OLCY ATTN F. FAJEN
OLCY ATTN M. SCHEIBE
OLCY ATTN M. SCHEIBE
OLCY ATTN B. WHITE

MISSION RESEARCH CORP.
1720 RANDOLPH ROAD, S.E.
ALBUQUERQUE, NEW MEXICO 87106
OICY R. STELLINGWERF
OICY M. ALME
OICY L. WRIGHT

MITRE CORPORATION, THE
P.O. BOX 208
BEDFORD, MA 01730
OICY ATTN JOHN MORGANSTERN
OICY ATTN G. HARDING
OICY ATTN C.E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
OICY ATTN W. HALL
OICY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP 12340 SANTA MONICA BLVD. LOS ANGELES, CA 90025 01CY ATTN E.C. FIELD, JR. PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASS TO THIS ADDRESS)
01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
4 ARROW DRIVE
WOBURN, MA 01801
01CY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS, INC. P.O. BOX 3027 BELLEVUE, WA 98009 OICY ATTN E.J. FREMOUW

PHYSICAL DYNAMICS, INC. P.O. BOX 10367 OAKLAND, CA 94610 ATTN A. THOMSON

R & D ASSOCIATES
P.O. BOX 9695

MARINA DEL REY, CA 90291

OICY ATTN FORREST GILMORE

OICY ATTN WILLIAM B. WRIGHT, JR.

OICY ATTN WILLIAM J. KARZAS

OICY ATTN WILLIAM J. KARZAS

OICY ATTN H. ORY

OICY ATTN C. MACDONALD

OICY ATTN R. TURCO

OICY ATTN L. DERAND

OICY ATTN W. TSAI

RAND CORPORATION, THE 1700 MAIN STREET SANTA MONICA, CA 90406 OICY ATTN CULLEN CRAIN OICY ATTN ED BEDROZIAN

RAYTHEON CO. 528 BOSTON POST ROAD SUDBURY, MA 01776 O1CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
330 WEST 42md STREET
NEW YORK, NY 10036
01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.

1150 PROSPECT PLAZA

LA JOLLA, CA 92037

OICY ATTN LEWIS M. LINSON

OICY ATTN DANIEL A. HAMLIN

OICY ATTN E. FRIEMAN

OICY ATTN E.A. STRAKER

OICY ATTN CURTIS A. SMITH

OICY ATTN JACK MCDOUGALL

SCIENCE APPLICATIONS, INC 1710 GOODRIDGE DR. MCLEAN, VA 22102 ATTN: J. COCKAYNE

SRI INTERNATIONAL

333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025

01CY ATTN DONALD NEILSON

01CY ATTN ALAN BURNS

01CY ATTN R. TSUNODA

01CY ATTN R. TSUNODA

01CY ATTN WALTER G. CHESNUT

01CY ATTN WALTER JAYE

01CY ATTN WALTER JAYE

01CY ATTN WALTER JAYE

01CY ATTN R. LEADABRAND

01CY ATTN G. CARPENTER

01CY ATTN G. PRICE

01CY ATTN V. GONZALES

01CY ATTN V. GONZALES

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W.P. BOQUIST

TOYON RESEARCH CO.
P.O. Box 6890
SANTA BARBARA, CA 93111
OICY ATTN JOHN ISE, JR.
OICY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
OICY ATTN R. K. PLEBUCH
OICY ATTN S. ALTSCHULER
OICY ATTN D. DEE
OICY ATTN D. STOCKJELL
SNTF/1575

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MASS 01803
O1CY ATTN W. REIDY
O1CY ATTN J. CARPENTER
O1CY ATTN C. HUMPHREY